心拍制御トレーニングによるパフォーマンス向上の検討

○東山明子（滋賀県立大学）
丹羽浩昭（聖母被昇天学院女子短期大学）

目的

アーアーリー選手を対象として、俯視による心拍バイオフィードバックを用いて心拍制御トレーニングを行い、アーコリーの射的パフォーマンスの向上を試みた。そして以下の仮説について検討した。
仮説①心拍バイオフィードバックを用い、心拍制御トレーニングによって心拍制御能力が向上する。
仮説②心拍制御能力の獲得によってアーコリーの射的パフォーマンスが向上する。
仮説③リラクゼーションと俯視のトレーニングと心拍制御能力の獲得は、優勢前額皮上電位のα波の出現電位（μV）を増大させ、アーカリーのパフォーマンス時の集中力を高める。

方法

1. 被験者：経験2年目の高校アーコリー部員
 トレーニング群：男子7名、女子2名、計9名
 コントロール群：男子4名、女子4名、計8名
2. 実験期日・場所
 トレーニング群 1999年7月4日、7月18日、
 8月8日 K高校アーコリー場
 トレーニング期間：1999年7月5日～7月16日の中の9日間
 K高校体育館
 コントロール群 1999年7月23日、8月7日、
 8月20日 T高校アーコリー場
 行射テストを両群それぞれ上記の3日間行い、初日をpre、中間日をmiddle、最終日をpostとした。
3. 測定内容
 pre、middle、postの3回にアーコリー・パフォーマンステストとして行射を行った。
 心拍数の測定には、POLAR ELECTRO 製（FINLAND）のハートレイトリモニターを勤務120秒（HRモニターと省略する））を用いて5秒間隔で記録し、実験後に解析ソフトで算出した。
 優勢前額皮上電位（α波）の測定には、BIOFEEDBACK SYSTEM FM515N/FM516N（フューテック・エレクトロニクス株式会社製）を用い、その中のα1、2、3波をデータとして使用した。なお、α1波：8～9Hz、α2波：10～11Hz、α3波：12～13Hzとした。

気分評価はPOMS（感情変化尺度）検査用紙を用いた。
主観的集中度、主観的緊張度をの各セット6射行射後の矢取りの後に1射毎に7段階評価で求めた。（全く集中できない状態を1段、非常に集中できる状態を7段、同様に全く緊張しない状態を1段、非常に緊張する状態を7段とした）
4. 実験手続き
 トレーニング群はpreテスト及びそれからほぼ2週間毎に、アーコリー・パフォーマンステストをmiddle、postテストと計3回行った。preとmiddleの間にのみ9日間の自律訓練法によるリラクゼーションと俯視を用いたメンタルトレーニング（FUTEK製音楽瞑想テープAPEL1-Aを15分に編集して使用）とバイオフィードバックを用いた心拍制御トレーニングを行った。middleとpostの間はトレーニングは行われなかった。
 コントロール群はpre、middle、postテストのみを行った。実験の内容と流れを表1に示した。

<table>
<thead>
<tr>
<th>表1 実験の内容と流れ</th>
</tr>
</thead>
<tbody>
<tr>
<td>pre</td>
</tr>
<tr>
<td>HRモニター装着</td>
</tr>
<tr>
<td>POMS</td>
</tr>
<tr>
<td>HRテスト (50秒×12回)</td>
</tr>
<tr>
<td>行射前額波測定</td>
</tr>
<tr>
<td>行射テスト (6射×3回)</td>
</tr>
<tr>
<td>静止状態波測定</td>
</tr>
<tr>
<td>POMS</td>
</tr>
</tbody>
</table>

行射テストでは、トーナメントでの決勝戦の方法をもとに6射を1セッット（4射以内）として3セッット行った。距離は精神的な影響を最も受けやすいと思われる50mに設定し、距離間隔（50m、30m）の主観的判定に基づいた。回転性は10個の同心円から、中心円から2つずつの黄、赤、淡青、黑、白に色分けされている。行射得点は中心円が10点で外側に行くにつれて、0点に減少し、0点は0点である。

優勢前額皮上電位については、行射テスト前の1分間と行射後安静5分間の最後1分間を測定し、α1、2、3波について検討した。
トレーニング群、コントロール群ともにpreテストでのHRテスト、アーコリー・パフォーマンステスト、優勢前額皮上電位、POMS、主観的集中度、主観的緊張度の結果を基準として、middle、post各テストの結果と比較した。

結果

1. トレーニングによる行射成績の向上
9日間のトレーニング効果とその残存効果をみるためにpreとmiddle、postの行射成績の得点を比較し、図1に示した。
図1から、トレーニング群の実行成績はpreよりmiddleの方が有意に高く（0.01水準）、トレーニング群とコントロール群の実行成績の比較ではmiddleでトレーニング群のほうが有意に高かった（0.05水準）。両群ともpreとpostの間では有意な差はみられなかった。

2. 心拍数変化トレーニングにおける心拍の変化

トレーニング群を対象に9回行った心拍数トレーニングの心拍数と心拍数（測定心拍数/テスト日安静心拍数×100）の変化を図2、3に示した。

安静時心拍数はトレーニング開始前の安静6分間のうち、最後の1分間の心拍数を平均値とした。トレーニング中の心拍数は[心拍数減少方向への心拍数変動50秒+心拍数10秒]×12回の試行時の心拍数の平均値とした。

図2から、トレーニングの後半は安静時心拍数よりもトレーニング心拍数のほうが有意に低かった。また、図3からトレーニング開始時と比較して、トレーニング前半は心拍数の変動が大きい日もあったが、トレーニングの後半（6日目以降）では心拍数の変動が比較的小さく、安静時心拍数よりもトレーニング心拍数を低く制御ることができており、心拍制御がある程度成功したと考えられる。

3. HRテスト時的心拍の変化

トレーニング群、コントロール群それぞれのHRテスト時の心拍数の平均値をpreとmiddle、postで比較するため、心拍数を図4に示した。

4. 心拍の変化トレーニングの実行時の心拍数の変化を図5に示した。

図4から、preとmiddleでは両群に有意な差はみられなかったが、postではトレーニング群のほうがコントロール群より有意に低かった（5%水準）。また、middleとpostにおいてコントロール群では、安静時に心拍数よりもHRテスト時的心拍数を低く制御することが出来ず心拍数が100を越えたが、トレーニング群では100より低く制御することができた。

4. 行事時の心拍の変化

アーチェリーパフォーマンステストの実行時の心拍数の変化を図6に示した。

5. 行事時の主観的緊張度、観察的集中度

心拍数の変化を図7に示した。

図7から、preの主観的緊張度においてのみコントロール群のほうがトレーニング群より有意に高かった（0.1%水準）。有意差はみられなかったが、pre、middle、postのいずれにおいても主観的緊張度はコントロール群の方が高く、観察的集中度はトレーニング群のほうが高い傾向がみられた。

6. 行事前の優勢前額皮質上電位の変化

行事前の優勢前額皮質上電位を各1分間測定し、α1.2.3波について図7.8.9に示した。また、優勢電位を各測定優勢前額皮質上電位/安息時電位×100で求めて図に折れ線グラフで示した。